

Computer Networks & Software Inc.

Accelerating CNS

Development and Demonstration of the NASA Small Aircraft Transportation System(SATS) Airborne Internet(AI)

Chris A. Wargo

I-CNS Conference April 30, 2002

7405 Alban Station Court, Suite B201, Springfield, Virginia 22150-2318 (703) 644-2103

Agenda

Accelerating CNS

GLENN RESEARCH CENTER

- Project Overview
- Snapshot of the work performed
 - System engineering and analysis tasks
- Testbed/demonstration platform

All information contained in this document is presented for research discussion purposes only and is not endorsed nor approved by any NASA components or individuals.

SATS Program Objectives

- Concept: Add mobility and economic grow to communities - by increasing smaller airport capacity
- **Objectives:**
 - Higher volume operations in non-radar airspace at nontowered facilities
 - Lower landing minimums at minimally equipped landing facilities
 - Increase single pilot crew safety mission reliability
 - En route procedures and systems for integrated fleet operations

SATS @ I-CNS

- NASA GRC SATS AI Demonstration
 - Demonstrations Throughout the Day
- SATS Workshop Session on Thursday

SATS AI Project Summary

Accelerating CNS

• Project:

- Develop the requirement, architecture, and system level design baselines,
- and establish the evaluation testbed for the Airborne Internet.

AI Objective:

- Consolidate and integrate the exchange of CNS data.
- Minimize the number of radios and antennas on an aircraft. Goal is to provide common access means for all wireless aircraft applications.

• Deliverables(FY01):

- AI Requirements Document
- Technology Evaluation Report
- NAS Infrastructure Assessment
- Preliminary Candidate AI Architecture Report
- Preliminary Candidate AI Architecture Evaluation Report

- Computer Networks & Software, Inc. (CNS) Prime
- Mulkerin Associates Inc. (MAI)
- AvCS Research Ltd.
- Microflight, Inc.
- Project Management Enterprises, Inc. (PMEI)
- AvCom, Inc.
- Comptel, Inc.

Airborne Internet Notional Diagram¹

Accelerating CNS

1. Source: SATS Airborne Internet Joint Meeting ATC/CNS, Architecture Technology Corporation Briefing, 3/1/02.

System Engineering Challenge

- Design for reaching horizon max degrees of freedom
- Use an incremental approach as Concept of Operations evolves
- Provide for early demonstrations of concepts
- Interoperate with the NAS
- Use an Integrated CNS approach
- Obtain low cost solutions

Subnetworks

Generic SATS AI Model

Accelerating CNS

All the similarities to the ATN design challenge of the 1980's

CNS SATS Airborne Internet Environment

AI Requirements Development Methodology

Accelerating CNS

Operational Services (based on Notional Concept of Operational)

Entity and services relationships Reference Model

Services allocated to system entities

Information Exchange Data Objects allocated by service/ functional processes (data flows)

Information Exchange Needs (communications requirements)

AI Requirements

Accelerating CNS

Macro-Level Object Oriented Analysis Process

Operational Services (based on **Operational Concepts**)

entities

Entity and services relationships Reference Model

State	Purpose	Functions	A/C 1	A/C 2	Int	Surv	NAV	FSS	NWS	ATM Sys	Airport
2005	Provide data for tracking aircraft on the ground. Provide data for tracking an aircraft enroute Support safe separation between participating traffic and airspace.	Provide data to ensure proper separation to avoid potential hazards and collisions. Provide data to support VFR and IFR traffic separation. Provide data to monitor flight progress.	х			х					

State	Purpose	Functions	FPU	wx	AS	МС	NAV	ASI	PE	PIE
2005	Provide data for tracking aircraft on the ground. Provide data for tracking an aircraft enroute	Provide data to ensure proper separation to avoid potential hazards and collisions. Provide data to support VFR and IFR traffic separation.			х					
	Support safe separation between participating traffic and airspace.	Provide data to monitor flight progress.								

Information Exchange Data
Objects allocated by service/
functional processes (data flows)

Information Exchange Needs (communications requirements)

Information Exchange - (IE Object)	Type: G/A
Airspace Situation (AS)	Integrity (Error Rate): High
	Information Unit Size (Min, Max, Avg): 0.2 Kb, 13 Kb, 11 Kb
	Frequency of Occurrence: 5 seconds
Applicable Interface: (Entity-to-Entity)	Acceptable Delay: 5 seconds
E	Authentication: No
	Priority: Medium
	Retransmission Required: No
	Suitable for Addressed Communications: No
	Suitable for Broadcast: Yes
	Suitable for Multicast: Yes

Loading

SATS Flight Profile

Accelerating CNS

<u>Airborne Internet Air/Ground Messages</u>

	Human	System	Total
Total Load (Kb)	70	30,691	30,761
Average Message Size (Kb)	1.3	4.0	4.0
Average Load/Minute (Kb/min)	0.6	255.8	256.3
Total # Messages	55	7,671	7,726
Average # Messages/Minute	0.5	63.9	64.4

Technology Evaluation

Accelerating CNS

Architectural Toolkit

Near-term Technologies

Technologies
VDL M2-B, VDL M4, VDL M3, UAT
Inmarsat INM 3 & 4, GlobalStar/ Qualcom
3GPP, UMTS, Aircell
802.11, ARINC 664
ATN, IPv4, IPv6, VoIP, IPSec, Mobile IP, QoS, Multicast, Self Organizing MANET, P-P, CDMA, IP Over M2, M3, M4
LAAS, WAAS
ADS-B, TIS-B, TIS

Technologies to be Researched

Tool Kit	Technology	Comments			
Wireless VDL Mode 4 - Like		Wider bandwidth			
	Packet Mode - C Band	acket Mode - C Band Wider bandwidth			
SATCOM	K Band	Weight, size, and power			
SATCOM	Motient	Collect Information			
	Inmarsat 3 & 4 - MPDS	Collect Information			
Cellular UMTS for ATC		U.S. ATC suitability			

SATS Technology & Architecture Relationship

Common Framework - Wx

SATS AI Architectures

Accelerating CNS

Architecture Principles

<u> </u>	
Ref	Principle
1	Provides the means to fully support the functional services.
2	The AI will be separable into platform specific systems defined as the CMS and a system defined NMS. To this extent the architecture will modular.
3	The mechanisms and techniques employed with the AI will be self-organizing.
4	All communication, to the extent practical, will be performed through a primary means of communication.
5	Within the AI there will be no single point of failure.
6	The system will be constructed using open system standards.
7	The interface to the NAS (enroute, terminal controllers) will be through a gateway facility.
8	Provide for interfaces to the entities shown in the Entity relationship Model.
9	Provide for information and operational security.

Air Centric Architecture

Space Centric Architecture

Ground Centric Architecture

Evaluation Factors and Architecture Models

Accelerating CNS

Evaluation Factors

- Cost
 - On-board and off-board cost components
 - Infrastructure requirements
 - Overlay on existing or new infrastructure to support SATS AI
 - SATS dedicated infrastructure or shared (and paid for) by other users
 - Use of airport area as cost model
- Availability
 - Time horizon
- Performance
 - Adherence to AI architectural principles
 - Functional requirements
 - Bandwidth sizing
 - Reliability redundancy
 - Delay
- Scalability
- Risk Assessment

Candidate Architectures for Comparison

Technology	Space	Air	Ground
Inmarsat INM 3 & 4	V		
VDL Mode SATS		√	
UMTS for ATC			$\sqrt{}$
3 GPP			\checkmark
TCP/IP, Mobile IP, Multicast	\checkmark	√	\checkmark
TIS-B, LAAS	V	√	√
Peer-to-Peer	√	√	\checkmark
Self Organizing (Manet)		√	
CDMA			- √
IPSec	√	√	√

AI Architectural Evaluation Results

Accelerating CNS

- Aircraft Centric Architecture
 - Meets SATS requirements
 - Low risk, low cost, near COTS option
 - ICAO standards based with multiple hardware vendors
- Space Centric Architecture
 - Available as a service now
 - Existing aircraft can be upgraded to this service
 - Transition higher bandwidth with Inmarsat-4 constellation
- Ground Centric Architecture
 - UMTS technology has no inherent show stoppers and meets SATS requirements
 - High risk dependence on commercial aviation for development, certification and deployment of technology

Aircraft - centric currently evaluated as best approach.

Test Bed – Build A with Mode SATS

Accelerating CNS

Aircraft N384

Aircraft N372, 374 & 376

Ground Facility

Aircraft N382

SATS Nodal Protocol Architecture

Airborne Internet Build A Features

Accelerating CNS

- VDL Mode SATS point-to-point and broadcast communication capability:
 - Air-to-air, self organizing, peerto-peer communication
 - Functionality/interoperability
- Demonstrated "all-in-one" AI connectivity.
- Internet connectivity.
- Integrated hardware/software components from many suppliers.
- Successfully implemented and tested the software based router for SATS AI.

Integrated Components
Mode SATS VHF Radio
EFR 300 Ground Station
VDL Mode Subnet Emulation using RF Attenuator
ADS-B Position Reporting System
FIS-B Graphical Weather Products
ATN CPDLC
Pilot/Aircraft Information Exchange
Netscape
E-mail Application
Web-enabled Remote Equipment Status Monitor
Aircraft Mobility Based on DNS
Peer to Peer tool

Intel-based Workstations and Sun

Workstations (Ultra 10)

Configuration and integration work represents a "one of a kind" rapid prototype of the airborne internet.

Current Status

Accelerating CNS

Sustaining Testbed Build A

Contacts

Accelerating CNS

Computer Networks & Software, Inc.

7405 Alban Station Ct. Suite B-201 Springfield, VA 22150-2318

CNS: Chris Dhas or Chris Wargo
703-644-2103
Chris.Dhas@CNSw.com, Chris.Wargo@CNSw.com
http://www.CNSw.com